Четверг, 21.11.2024, 10:33
Вы вошли как Гость | Группа "Гости"Приветствую Вас Гость | RSS


Аргонодуговая сварка алюминия. Любые металлоизделия.

Аргоно-дуговая сварка

        Cамым простым и надёжным способом соединения и ремонта деталей из цветных металлов и чугуна, является сварка в среде защитных газов.

 
Выполняем работы по сварке изделий из нержавеющей стали, чугуна, меди, алюминия и алюминиевых сплавов. 

Дуговая сварка в защитных газах. Автоматическую, полуавтоматическую и ручную сварку меди в среде защитных газов можно производить плавящимся и неплавящимся (вольфрамовым) электродом. Наиболее часто для чистой меди применяют сварку вольфрамовым электродом (для толщин до 10 мм) с подачей присадочной проволоки, реже — сварку плавящимся электродом. Применяют защитные газы: аргон высшего сорта по ГОСТ 10157—73, гелий особой чистоты по МРТУ 6-02-274—66, азот особой чистоты по МРТУ 6-02-375—66. Наиболее целесообразно применять азот высокой чистоты, в котором эффективный и термический КПД дугового разряда выше, чем для аргона и гелия. При сварке в азоте глубина проплавления получается выше, чем при сварке в аргоне и гелии, но устойчивость дугового разряда в азоте ниже, чем в аргоне и гелии. Эти результаты объясняются наличием мощных плазменных потоков в дуге, горящей в азоте, и более высоким запасом энтальпии азотной плазмы (диссоциация 1М2). Однако при сварке в труднодоступных местах или при сварке меди малой толщины (< 1 мм) предпочтение следует отдать аргону, как защитному газу, в котором наблюдается наибольшая устойчивость дугового разряда. Несмотря на высокую чистоту защитных газов, медь при сварке подвергается окислению, и может возникать пористость, что определяет необходимость применения легированных присадочных и электродных проволок.

Сварку меди неплавящимся вольфрамовым электродом осуществляют на постоянном токе прямой полярности; используют электрод из лантанированного вольфрама, который обладает удовлетворительной устойчивостью в защитных газах, в том числе, и в азоте особой чистоты. При сварке электрод располагают строго в плоскости стыка, наклон электрода 60—80 «углом назад». При сварке меди толщиной более 4—5 мм рекомендуется подогрев до 300—400 0С.

Присадочные проволоки из чистой меди М1 и МО при сварке обеспечивают получение металла шва, по составу и физическим свойствам близкого к основному металлу, однако механические свойства сварного соединения понижены, а пористость уменьшает плотность металла шва. При введении в состав присадочных проволок раскислителей и легирующих компонентов механические свойства сварного соединения возрастают, но, как правило, снижаются тепло-и электропроводность металла шва, что недопустимо при сварке ответственных изделий из чистой меди. В таких случаях рекомендуются присадочные проволоки, легированные сильными раскислителями (в микроколичествах), которые после сварки не остаются в составе твердых растворов, а переходят в свои соединения (высокодисперсные, шлаковые включения), и поэтому не влияют на физические свойства металлов. Аргонодуговая и азотио-дуговая сварки будут различаться по составу присадочных проволок, так как в азоте возможно образование нитридов некоторыми легирующими компонентами.

Электродную проволоку и кромки основного металла зачищают до блеска и обезжиривают. Медь толщиной до 5—6 мм можно сваривать без разделки кромок. Для сварки вакуумно-плотных швов выполняют разделку «вакуумный замок» с обязательной проваркой корневого шва. Сварку осуществляют на подкладках из прокаленного графита или медных пластин, охлаждаемых водой. Чрезмерное охлаждение медной подкладки и появление точки росы может вызвать пористость в нижней части шва. Медь толщиной более 5 мм сваривают на флюсовой подушке. Швы большой протяженности сваривают по прихваткам, проставленным с шагом 300—400 мм.

Дуговую сварку латуней и других сплавов меди, содержащих цинк, рекомендуется вести с низкоопущенным соплом. Расход защитного газа зависит от его плотности и теплофизических свойств (л/мин): аргона 8-10, гелия 10—12, азота.

Особенности сварки биметалла медь—сталь, наплавки меди на поверхность стали и сварки меди со сталью.

При осуществлении этих технологических операций возможно возникновение хрупких слоев за счет интенсивного проникновения меди в поверхностные слои стали по границам зерен. Процесс проникновения определяется температурой и временем контактирования жидкой меди с твердой сталью.

Для уменьшения проникновения меди по границам зерен процесс сварки меди со сталью или процесс наплавки меди на сталь надо производить при минимальной погонной энергии и с минимальной глубиной проплавления, используя дополнительное охлаждение для ускорения кристаллизации медного слоя. Наплавку меди на сталь можно производить, используя различные способы сварки, соблюдая указанные выше условия.

Хорошие результаты можно получить при наплавке под флюсом плавящимся электродом, подающимся автоматической головкой, совершающей колебания в плоскости, перпендикулярной к поступающему движению. Стальную поверхность можно охлаждать со стороны, противоположной наплавке, или охлаждать непосредственно металл наплавки водоохлаждаемыми устройствами.

При наплавке меди в среде аргона плавящимся электродом следует соблюдать аналогичные условия. При сварке меди со сталью плавящимся электродом надо электрод отклонять в сторону меди, так как магнитное дутье в процессе сварки будет возвращать дуговой разряд на свариваемые кромки. При сварке необходимо применять минимальные токи, обеспечивающие формирование сварного шва. Сварку биметалла медь — сталь можно осуществлять со стороны плакирующего слоя или со стороны стали.

В первом случае неизбежны удаление плакирующего слоя на стыкуемых кромках, сварка стали, зачистка полученного шва и наплавка меди на сталь для восстановления плакирующего слоя. При возможности сварки со стороны стали плакирующий медный слой в зоне сварки не удаляют; после сварки стали производят заварку стыка на плакирующем слое любым способом.

Дуговая сварка алюминия в среде защитных газов

Дуговая сварка в среде защитных газов позволяет значительно повысить качество сварных соединений, так как исключает возможность появления оксидной пленки при высокой температуре сварочной ванны. Для этого применяют как плавящиеся, так и неплавящиеся электроды.

Сварка неппавящимся электродом в среде аргона обеспечивает наилучшее формирование шва, снижает вероятность деформаций. Питание сварочной дуги осуществляют от источника переменного тока с падающей внешней характеристикой. Этот вид сварки обеспечивает устойчивое горение дуги, что в свою очередь положительно сказывается на структуре сварочного шва (пористость, остаточные напряжения и деформации и т.д.).



Форма входа

Поиск

Календарь

«  Ноябрь 2024  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
252627282930

Статистика


Онлайн всего: 3
Гостей: 3
Пользователей: 0
-->